TY - JOUR
T1 - Bayesian analysis of bivariate competing risks models with covariates
AU - Wang, Chen Pin
AU - Ghosh, Malay
N1 - Funding Information:
The first author's research was supported in part by NIH Grant Number MH40859-13. The second author's research was partially supported by NSF Grant Numbers SBR-9810968 and SES-9911485. Thanks are due to two reviewers for many useful comments.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - Bivariate exponential models have often been used for the analysis of competing risks data involving two correlated risk components. Competing risks data consist only of the time to failure and cause of failure. In situations where there is positive probability of simultaneous failure, possibly the most widely used model is the Marshall-Olkin (J. Amer. Statist. Assoc. 62 (1967) 30) bivariate lifetime model. This distribution is not absolutely continuous as it involves a singularity component. However, the likelihood function based on the competing risks data is then identifiable, and any inference, Bayesian or frequentist, can be carried out in a straightforward manner. For the analysis of absolutely continuous bivariate exponential models, standard approaches often run into difficulty due to the lack of a fully identifiable likelihood (Basu and Ghosh; Commun. Statist. Theory Methods 9 (1980) 1515). To overcome the nonidentifiability, the usual frequentist approach is based on an integrated likelihood. Such an approach is implicit in Wada et al. (Calcutta Statist. Assoc. Bull. 46 (1996) 197) who proved some related asymptotic results. We offer in this paper an alternative Bayesian approach. Since systematic prior elicitation is often difficult, the present study focuses on Bayesian analysis with noninformative priors. It turns out that with an appropriate reparameterization, standard noninformative priors such as Jeffreys' prior and its variants can be applied directly even though the likelihood is not fully identifiable. Two noninformative priors are developed that consist of Laplace's prior for nonidentifiable parameters and Laplace's and Jeffreys's priors for identifiable parameters. The resulting Bayesian procedures possess some frequentist optimality properties as well. Finally, these Bayesian methods are illustrated with analyses of a data set originating out of a lung cancer clinical trial conducted by the Eastern Cooperative Oncology Group.
AB - Bivariate exponential models have often been used for the analysis of competing risks data involving two correlated risk components. Competing risks data consist only of the time to failure and cause of failure. In situations where there is positive probability of simultaneous failure, possibly the most widely used model is the Marshall-Olkin (J. Amer. Statist. Assoc. 62 (1967) 30) bivariate lifetime model. This distribution is not absolutely continuous as it involves a singularity component. However, the likelihood function based on the competing risks data is then identifiable, and any inference, Bayesian or frequentist, can be carried out in a straightforward manner. For the analysis of absolutely continuous bivariate exponential models, standard approaches often run into difficulty due to the lack of a fully identifiable likelihood (Basu and Ghosh; Commun. Statist. Theory Methods 9 (1980) 1515). To overcome the nonidentifiability, the usual frequentist approach is based on an integrated likelihood. Such an approach is implicit in Wada et al. (Calcutta Statist. Assoc. Bull. 46 (1996) 197) who proved some related asymptotic results. We offer in this paper an alternative Bayesian approach. Since systematic prior elicitation is often difficult, the present study focuses on Bayesian analysis with noninformative priors. It turns out that with an appropriate reparameterization, standard noninformative priors such as Jeffreys' prior and its variants can be applied directly even though the likelihood is not fully identifiable. Two noninformative priors are developed that consist of Laplace's prior for nonidentifiable parameters and Laplace's and Jeffreys's priors for identifiable parameters. The resulting Bayesian procedures possess some frequentist optimality properties as well. Finally, these Bayesian methods are illustrated with analyses of a data set originating out of a lung cancer clinical trial conducted by the Eastern Cooperative Oncology Group.
UR - http://www.scopus.com/inward/record.url?scp=0038578416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038578416&partnerID=8YFLogxK
U2 - 10.1016/S0378-3758(02)00177-5
DO - 10.1016/S0378-3758(02)00177-5
M3 - Article
AN - SCOPUS:0038578416
SN - 0378-3758
VL - 115
SP - 441
EP - 459
JO - Journal of Statistical Planning and Inference
JF - Journal of Statistical Planning and Inference
IS - 2
ER -