TY - JOUR
T1 - AT1-receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation
AU - Qing Chen, H. U.I.
AU - Toney, Glenn M.
PY - 2001
Y1 - 2001
N2 - Autonomic neurons in the hypothalamic paraventricular nucleus (PVN) are innervated by osmotic-sensitive regions of the lamina terminalis, receive input from ANG II-containing cells, and express AT1 ANG II receptors. Therefore, we hypothesized that ANG II actions within the PVN could underlie hyperosmolality-induced increases in renal sympathetic nerve activity (RSNA). In anesthetized barore-ceptor-denervated rats, graded concentrations of NaCl (0.30, 0.9, 1.5, and 2.1 osmol/l) were injected (300 μl) centrally via the internal carotid artery (ICA) and produced corresponding increases in mean arterial pressure (MAP) and RSNA. In addition, equivalent hyperosmotic loads (1.5 osmol/l) of NaCl, glucose, and mannitol each significantly (P < 0.05) increased MAP and RSNA. The same stimuli had no effect when administered intravenously. Bilateral PVN microinjections (100 nl) of the AT1-receptor antagonist losartan (80 nmol) before osmotic challenge had no effect on resting RSNA but significantly (P < 0.05) reduced RSNA responses to hyperosmotic NaCl (n = 7), glucose (n = 6), and mannitol (n = 6). Increases in RSNA evoked by hyperosmotic NaCl were significantly (P < 0.05) attenuated ∼20 min after losartan injection and recovered within 60-120 min. In contrast, losartan outside the PVN as well as vehicle (saline) within the PVN failed to alter RSNA responses to ICA hyperosmotic NaCl. Results suggest that elevated RSNA after central sodium/osmotic activation is mediated, at least in part, by a synaptic mechanism involving AT1-receptor activation within the PVN.
AB - Autonomic neurons in the hypothalamic paraventricular nucleus (PVN) are innervated by osmotic-sensitive regions of the lamina terminalis, receive input from ANG II-containing cells, and express AT1 ANG II receptors. Therefore, we hypothesized that ANG II actions within the PVN could underlie hyperosmolality-induced increases in renal sympathetic nerve activity (RSNA). In anesthetized barore-ceptor-denervated rats, graded concentrations of NaCl (0.30, 0.9, 1.5, and 2.1 osmol/l) were injected (300 μl) centrally via the internal carotid artery (ICA) and produced corresponding increases in mean arterial pressure (MAP) and RSNA. In addition, equivalent hyperosmotic loads (1.5 osmol/l) of NaCl, glucose, and mannitol each significantly (P < 0.05) increased MAP and RSNA. The same stimuli had no effect when administered intravenously. Bilateral PVN microinjections (100 nl) of the AT1-receptor antagonist losartan (80 nmol) before osmotic challenge had no effect on resting RSNA but significantly (P < 0.05) reduced RSNA responses to hyperosmotic NaCl (n = 7), glucose (n = 6), and mannitol (n = 6). Increases in RSNA evoked by hyperosmotic NaCl were significantly (P < 0.05) attenuated ∼20 min after losartan injection and recovered within 60-120 min. In contrast, losartan outside the PVN as well as vehicle (saline) within the PVN failed to alter RSNA responses to ICA hyperosmotic NaCl. Results suggest that elevated RSNA after central sodium/osmotic activation is mediated, at least in part, by a synaptic mechanism involving AT1-receptor activation within the PVN.
KW - Angiotensin II
KW - Osmolality
KW - Paraventricular nucleus
KW - Sodium
KW - Sympathetic nerve activity; arterial pressure
UR - http://www.scopus.com/inward/record.url?scp=0035665119&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035665119&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.2001.281.6.r1844
DO - 10.1152/ajpregu.2001.281.6.r1844
M3 - Article
C2 - 11705769
AN - SCOPUS:0035665119
SN - 0363-6119
VL - 281
SP - R1844-R1853
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 6 50-6
ER -