TY - JOUR
T1 - ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle
AU - Buvinic, Sonja
AU - Almarza, Gonzalo
AU - Bustamante, Mario
AU - Casas, Mariana
AU - López, Javiera
AU - Riquelme, Manuel
AU - Sáez, Juan Carlos
AU - Huidobro-Toro, Juan Pablo
AU - Jaimovich, Enrique
PY - 2009/12/11
Y1 - 2009/12/11
N2 - ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μM. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μM suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μM ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology.
AB - ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μM. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μM suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μM ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology.
UR - http://www.scopus.com/inward/record.url?scp=71749095578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71749095578&partnerID=8YFLogxK
U2 - 10.1074/jbc.M109.057315
DO - 10.1074/jbc.M109.057315
M3 - Article
C2 - 19822518
AN - SCOPUS:71749095578
SN - 0021-9258
VL - 284
SP - 34490
EP - 34505
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -