TY - JOUR
T1 - Association of Bax and Bak homo-oligomers in mitochondria
T2 - Bax requirement for Bak reorganization and cytochrome c release
AU - Mikhailov, Valery
AU - Mikhailova, Margarita
AU - Degenhardt, Kurt
AU - Venkatachalam, Manjeri A
AU - White, Eileen
AU - Saikumar, Pothana
PY - 2003/2/14
Y1 - 2003/2/14
N2 - ATP depletion induced by hypoxia or mitochondrial inhibitors results in Bax translocation from cytosol to mitochondria and release of cytochrome c from mitochondria into cytosol in cultured rat proximal tubule cells. Translocated Bax undergoes further conformational changes to oligomerize into high molecular weight complexes (Mikhailov, V., Mikhailova, M., Pulkrabek, D. J., Dong, Z., Venkatachalam, M. A., and Saikumar, P. (2001) J. Biol. Chem. 276, 18361-18374). Here we report that following Bax translocation in ATP-depleted rat proximal tubule cells, Bak, a proapoptotic molecule that normally resides in mitochondria, also reorganizes to form homo-oligomers. Oligomerization of both Bax and Bak occurred independently of Bid cleavage and/or translocation. Western blots of chemically cross-linked membrane extracts showed nonoverlapping "ladders" of Bax and Bak complexes in multiples of ∼21 and ∼23 kDa, respectively, consistent with molecular homogeneity within each ladder. This indicated that Bax and Bak complexes were homo-oligomeric. Nevertheless, each oligomer could be co-immunoprecipitated with the other, suggesting a degree of affinity between Bax and Bak that permitted co-precipitation but not cross-linking. Furthermore, dissociation of cross-linked complexes by SDS and renaturation prior to immunoprecipitation did not prevent reassociation of the two oligomeric species. Notably, expression of Bcl-2 prevented not only the oligomerization of Bax and Bak, but also the association between these two proteins in energy-deprived cells. Using Bax-deficient HCT116 and BMK cells, we show that there is stringent Bax requirement for Bak homo-oligomerization and for cytochrome c release during energy deprivation. Using Bak-deficient BMK cells we further show that Bak deficiency is associated with delayed kinetics of Bax translocation but does not affect either the oligomerization of translocated Bax or the leakage of cytochrome c. These results suggest a degree of functional cooperation between Bax and Bak in this form of cell injury, but also demonstrate an absolute requirement of Bax for mitochondrial permeabilization.
AB - ATP depletion induced by hypoxia or mitochondrial inhibitors results in Bax translocation from cytosol to mitochondria and release of cytochrome c from mitochondria into cytosol in cultured rat proximal tubule cells. Translocated Bax undergoes further conformational changes to oligomerize into high molecular weight complexes (Mikhailov, V., Mikhailova, M., Pulkrabek, D. J., Dong, Z., Venkatachalam, M. A., and Saikumar, P. (2001) J. Biol. Chem. 276, 18361-18374). Here we report that following Bax translocation in ATP-depleted rat proximal tubule cells, Bak, a proapoptotic molecule that normally resides in mitochondria, also reorganizes to form homo-oligomers. Oligomerization of both Bax and Bak occurred independently of Bid cleavage and/or translocation. Western blots of chemically cross-linked membrane extracts showed nonoverlapping "ladders" of Bax and Bak complexes in multiples of ∼21 and ∼23 kDa, respectively, consistent with molecular homogeneity within each ladder. This indicated that Bax and Bak complexes were homo-oligomeric. Nevertheless, each oligomer could be co-immunoprecipitated with the other, suggesting a degree of affinity between Bax and Bak that permitted co-precipitation but not cross-linking. Furthermore, dissociation of cross-linked complexes by SDS and renaturation prior to immunoprecipitation did not prevent reassociation of the two oligomeric species. Notably, expression of Bcl-2 prevented not only the oligomerization of Bax and Bak, but also the association between these two proteins in energy-deprived cells. Using Bax-deficient HCT116 and BMK cells, we show that there is stringent Bax requirement for Bak homo-oligomerization and for cytochrome c release during energy deprivation. Using Bak-deficient BMK cells we further show that Bak deficiency is associated with delayed kinetics of Bax translocation but does not affect either the oligomerization of translocated Bax or the leakage of cytochrome c. These results suggest a degree of functional cooperation between Bax and Bak in this form of cell injury, but also demonstrate an absolute requirement of Bax for mitochondrial permeabilization.
UR - http://www.scopus.com/inward/record.url?scp=0038025230&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038025230&partnerID=8YFLogxK
U2 - 10.1074/jbc.M203392200
DO - 10.1074/jbc.M203392200
M3 - Article
C2 - 12454021
AN - SCOPUS:0038025230
SN - 0021-9258
VL - 278
SP - 5367
EP - 5376
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 7
ER -