Archaea signal recognition particle shows the way

Christian Zwieb, Shakhawat Bhuiyan

Research output: Contribution to journalReview article

9 Scopus citations

Abstract

Archaea SRP is composed of an SRP RNA molecule and two bound proteins named SRP19 and SRP54. Regulated by the binding and hydrolysis of guanosine triphosphates, the RNA-bound SRP54 protein transiently associates not only with the hydrophobic signal sequence as it emerges from the ribosomal exit tunnel, but also interacts with the membrane-associated SRP receptor (FtsY). Comparative analyses of the archaea genomes and their SRP component sequences, combined with structural and biochemical data, support a prominent role of the SRP RNA in the assembly and function of the archaea SRP. The 5e motif, which in eukaryotes binds a 72 kilodalton protein, is preserved in most archaea SRP RNAs despite the lack of an archaea SRP72 homolog. The primary function of the 5e region may be to serve as a hinge, strategically positioned between the small and large SRP domain, allowing the elongated SRP to bind simultaneously to distant ribosomal sites. SRP19, required in eukaryotes for initiating SRP assembly, appears to play a subordinate role in the archaea SRP or may be defunct. The N-terminal A region and a novel C-terminal R region of the archaea SRP receptor (FtsY) are strikingly diverse or absent even among the members of a taxonomic subgroup.

Original languageEnglish (US)
Article number485051
JournalArchaea
Volume2010
DOIs
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Physiology
  • Ecology, Evolution, Behavior and Systematics

Fingerprint Dive into the research topics of 'Archaea signal recognition particle shows the way'. Together they form a unique fingerprint.

  • Cite this