Abstract
Polymethyl methacrylate (PMMA) is widely used to treat traumatic head injuries (cranioplasty) and orthopedic injuries (bone cement), but there is a problem with implant-centered infections. With organisms such as Acinetobacter baumannii and methicillin-resistant staphylococcus aureus developing resistance to antibiotics, there is a need for novel antimicrobial delivery mechanisms without risk of developing resistant organisms. Objectives: To develop a novel antimicrobial implant material by generating silver nanoparticles (AgNP) in situ in PMMA. Results: All PMMA samples with AgNP's (AgNP-PMMA) released Ag + ions in vitro for over 28 days. In vitro antimicrobial assays revealed that these samples (even samples with the slowest release rate) inhibited 99.9% of bacteria against four different strains of bacteria. Long-term antimicrobial assay showed a continued antibacterial effect past 28 days. Some AgNP-loaded PMMA groups had comparable Durometer-D hardness (a measure of degree of cure) and modulus to control PMMA, but all experimental groups had slightly lower ultimate transverse strengths. Conclusions: AgNP-PMMA demonstrated a tremendously broad-spectrum and long-intermediate-term antimicrobial effect with comparable mechanical properties to control PMMA. Current efforts are focused on further improving mechanical properties by reducing AgNP loading and assessing fatigue properties.
Original language | English (US) |
---|---|
Pages (from-to) | 409-415 |
Number of pages | 7 |
Journal | Journal of Biomedical Materials Research - Part B Applied Biomaterials |
Volume | 100 B |
Issue number | 2 |
DOIs | |
State | Published - Feb 2012 |
Keywords
- antimicrobial
- bone cement
- cranioplasty
- polymethyl methacrylate
- silver nanoparticles
ASJC Scopus subject areas
- Biomedical Engineering
- Biomaterials