Antibodies from women urogenitally infected with C. trachomatis predominantly recognized the plasmid protein pgp3 in a conformation-dependent manner

Zhongyu Li, Youmin Zhong, Lei Lei, Yimou Wu, Shiping Wang, Guangming Zhong

Research output: Contribution to journalArticle

39 Scopus citations


Background. C. trachomatis organisms carry a cryptic plasmid that encodes 8 open reading frames designated as pORF1 to 8. It is not clear whether all 8 pORFs are expressed during C. trachomatis infection in humans and information on the functionality of the plasmid proteins is also very limited. Results. When antibodies from women urogenitally infected with C. trachomatis were reacted with the plasmid proteins, all 8 pORFs were positively recognized by one or more human antibody samples with the recognition of pORF5 protein (known as pgp3) by most antibodies and with the highest titers. The antibody recognition of the pORFs was blocked by C. trachomatis-infected HeLa but not normal HeLa cell lysates. The pgp3 fusion protein-purified human IgG detected the endogenous pgp3 in the cytosol of C. trachomatis-infected cells with an intracellular distribution pattern similar to that of CPAF, a chlamydial genome-encoded protease factor. However, the human antibodies no longer recognized pgp3 but maintained recognition of CPAF when both antigens were linearized or heat-denatured. The pgp3 conformation is likely maintained by the C-terminal 75% amino acid sequence since further deletion blocked the binding by the human antibodies and two conformation-dependent mouse monoclonal antibodies. Conclusion. The plasmid-encoded 8 proteins are both expressed and immunogenic with pgp3 as the most immunodominant antigen during chlamydial infection in humans. More importantly, the human anti-pgp3 antibodies are highly conformation-dependent. These observations have provided important information for further understanding the function of the plasmid-encoded proteins and exploring the utility of pgp3 in chlamydial diagnosis and vaccination.

Original languageEnglish (US)
Article number90
JournalBMC Microbiology
StatePublished - Jun 26 2008


ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Cite this