An Integrated Strategy for the Detection, Dereplication, and Identification of DNA-Binding Biomolecules from Complex Natural Product Mixtures

Hongyan Ma, Huiyun Liang, Shengxin Cai, Barry R. O'Keefe, Susan L. Mooberry, Robert H. Cichewicz

Research output: Contribution to journalArticlepeer-review

Abstract

A fundamental factor in natural product drug discovery programs is the necessity to identify the active component(s) from complex chemical mixtures. Whereas this has traditionally been accomplished using bioassay-guided fractionation, we questioned whether alternative techniques could supplement and, in some cases, even supplant this approach. We speculated that a combination of ligand-fishing methods and modern analytical tools (e.g., LC-MS and online natural product databases) offered a route to enhance natural product drug discovery. Herein, a candidate solution referred to as the lickety-split ligand-affinity-based molecular angling system (LLAMAS) is described. This approach utilizes an ultrafiltration-based LC-PDA-MS/MS-guided DNA-binding assay in combination with the (i) Global Natural Products Social Molecular Networking, (ii) Dictionary of Natural Products, and (iii) SciFinder platforms to identify DNA binders in complex chemical mixtures. LLAMAS was initially vetted in tests using known small-molecule DNA binders and then optimized to a 96-well plate-based format. A set of 332 plant samples used in traditional Chinese medicine was screened for DNA-binding activity with LLAMAS, resulting in the identification of seven DNA-binding molecules, including berberine (12), palmatine (13), coptisine (14), fangchinoline (15), tetrandrine (16), daurisoline (17), and dauricine (18). These results demonstrate that LLAMAS is an effective natural product discovery platform for the efficient identification and dereplication of DNA-binding molecules from complex mixtures.

Original languageEnglish (US)
Pages (from-to)750-761
Number of pages12
JournalJournal of Natural Products
Volume84
Issue number3
DOIs
StatePublished - Mar 26 2021

ASJC Scopus subject areas

  • Analytical Chemistry
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Drug Discovery
  • Complementary and alternative medicine
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'An Integrated Strategy for the Detection, Dereplication, and Identification of DNA-Binding Biomolecules from Complex Natural Product Mixtures'. Together they form a unique fingerprint.

Cite this