TY - JOUR
T1 - An Algorithm for the Use of Embolic Protection During Atherectomy for Femoral Popliteal Lesions
AU - Krishnan, Prakash
AU - Tarricone, Arthur
AU - Purushothaman, K. Raman
AU - Purushothaman, Meerarani
AU - Vasquez, Miguel
AU - Kovacic, Jason
AU - Baber, Usman
AU - Kapur, Vishal
AU - Gujja, Karthik
AU - Kini, Annapoorna
AU - Sharma, Samin
N1 - Publisher Copyright:
© 2017 American College of Cardiology Foundation
PY - 2017/2/27
Y1 - 2017/2/27
N2 - Objectives This study sought to identify an algorithm for the use of distal embolic protection on the basis of angiographic lesion morphology and vascular anatomy for patients undergoing atherectomy for femoropopliteal lesions. Background Atherectomy has been shown to create more embolic debris than angioplasty alone. Distal embolic protection has been shown to be efficacious in capturing macroemboli; however, no consensus exists for the appropriate lesions to use distal embolic protection during atherectomy. Methods Patients with symptomatic lower extremity peripheral artery disease treated with atherectomy and distal embolic protection were evaluated to identify potential predictors of DE. Plaque collected from the SilverHawk nose cone subset was sent to pathology for analysis to evaluate the accuracy of angiography in assessing plaque morphology. Results Significant differences were found in lesion length (142.1 ± 62.98 vs. 56.91 ± 41.04; p = 0.0001), low-density lipoprotein (82.3 ± 40.3 vs. 70.9 ± 23.2; p = 0.0006), vessel runoff (1.18 ± 0.9 vs. 1.8 ± 0.9; p = 0.0001), chronic total occlusion (131 vs. 10; p = 0.001), in-stent restenosis (33 vs. 6; p = 0.0081), and calcified lesions (136 vs. 65; p < 0.001). In simple logistic regression analysis lesion length, reference vessel diameter, chronic total occlusion, runoff vessels, and in-stent restenosis were found to be strongly associated with macroemboli. Angiographic assessment of plaque morphology was accurate. Positive predictive value of 92.31, negative predictive value of 95.35, sensitivity of 92.31, and specificity of 95.35 for calcium; positive predictive value of 95.56, negative predictive value of 100, sensitivity of 100, and specificity of 92.31 for atherosclerotic plaque. Thrombus/in-stent restenosis was correctly predicted. Conclusions Chronic total occlusion, in-stent restenosis, thrombotic, calcific lesions >40 mm, and atherosclerotic lesions >140 mm identified by peripheral angiography necessitate concomitant filter use during atherectomy to prevent embolic complications.
AB - Objectives This study sought to identify an algorithm for the use of distal embolic protection on the basis of angiographic lesion morphology and vascular anatomy for patients undergoing atherectomy for femoropopliteal lesions. Background Atherectomy has been shown to create more embolic debris than angioplasty alone. Distal embolic protection has been shown to be efficacious in capturing macroemboli; however, no consensus exists for the appropriate lesions to use distal embolic protection during atherectomy. Methods Patients with symptomatic lower extremity peripheral artery disease treated with atherectomy and distal embolic protection were evaluated to identify potential predictors of DE. Plaque collected from the SilverHawk nose cone subset was sent to pathology for analysis to evaluate the accuracy of angiography in assessing plaque morphology. Results Significant differences were found in lesion length (142.1 ± 62.98 vs. 56.91 ± 41.04; p = 0.0001), low-density lipoprotein (82.3 ± 40.3 vs. 70.9 ± 23.2; p = 0.0006), vessel runoff (1.18 ± 0.9 vs. 1.8 ± 0.9; p = 0.0001), chronic total occlusion (131 vs. 10; p = 0.001), in-stent restenosis (33 vs. 6; p = 0.0081), and calcified lesions (136 vs. 65; p < 0.001). In simple logistic regression analysis lesion length, reference vessel diameter, chronic total occlusion, runoff vessels, and in-stent restenosis were found to be strongly associated with macroemboli. Angiographic assessment of plaque morphology was accurate. Positive predictive value of 92.31, negative predictive value of 95.35, sensitivity of 92.31, and specificity of 95.35 for calcium; positive predictive value of 95.56, negative predictive value of 100, sensitivity of 100, and specificity of 92.31 for atherosclerotic plaque. Thrombus/in-stent restenosis was correctly predicted. Conclusions Chronic total occlusion, in-stent restenosis, thrombotic, calcific lesions >40 mm, and atherosclerotic lesions >140 mm identified by peripheral angiography necessitate concomitant filter use during atherectomy to prevent embolic complications.
KW - atherectomy
KW - embolic protection
KW - peripheral artery disease
UR - http://www.scopus.com/inward/record.url?scp=85013249471&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013249471&partnerID=8YFLogxK
U2 - 10.1016/j.jcin.2016.12.014
DO - 10.1016/j.jcin.2016.12.014
M3 - Article
C2 - 28231909
AN - SCOPUS:85013249471
SN - 1936-8798
VL - 10
SP - 403
EP - 410
JO - JACC: Cardiovascular Interventions
JF - JACC: Cardiovascular Interventions
IS - 4
ER -