Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets

Merel C. Postema, Daan van Rooij, Evdokia Anagnostou, Celso Arango, Guillaume Auzias, Marlene Behrmann, Geraldo Busatto Filho, Sara Calderoni, Rosa Calvo, Eileen Daly, Christine Deruelle, Adriana Di Martino, Ilan Dinstein, Fabio Luis S. Duran, Sarah Durston, Christine Ecker, Stefan Ehrlich, Damien Fair, Jennifer Fedor, Xin FengJackie Fitzgerald, Dorothea L. Floris, Christine M. Freitag, Louise Gallagher, David C. Glahn, Ilaria Gori, Shlomi Haar, Liesbeth Hoekstra, Neda Jahanshad, Maria Jalbrzikowski, Joost Janssen, Joseph A. King, Xiang Zhen Kong, Luisa Lazaro, Jason P. Lerch, Beatriz Luna, Mauricio M. Martinho, Jane McGrath, Sarah E. Medland, Filippo Muratori, Clodagh M. Murphy, Declan G.M. Murphy, Kirsten O’Hearn, Bob Oranje, Mara Parellada, Olga Puig, Alessandra Retico, Pedro Rosa, Katya Rubia, Devon Shook, Margot J. Taylor, Michela Tosetti, Gregory L. Wallace, Fengfeng Zhou, Paul M. Thompson, Simon E. Fisher, Jan K. Buitelaar, Clyde Francks

Research output: Contribution to journalArticle

14 Scopus citations

Abstract

Altered structural brain asymmetry in autism spectrum disorder (ASD) has been reported. However, findings have been inconsistent, likely due to limited sample sizes. Here we investigated 1,774 individuals with ASD and 1,809 controls, from 54 independent data sets of the ENIGMA consortium. ASD was significantly associated with alterations of cortical thickness asymmetry in mostly medial frontal, orbitofrontal, cingulate and inferior temporal areas, and also with asymmetry of orbitofrontal surface area. These differences generally involved reduced asymmetry in individuals with ASD compared to controls. Furthermore, putamen volume asymmetry was significantly increased in ASD. The largest case-control effect size was Cohen’s d = −0.13, for asymmetry of superior frontal cortical thickness. Most effects did not depend on age, sex, IQ, severity or medication use. Altered lateralized neurodevelopment may therefore be a feature of ASD, affecting widespread brain regions with diverse functions. Large-scale analysis was necessary to quantify subtle alterations of brain structural asymmetry in ASD.

Original languageEnglish (US)
Article number4958
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets'. Together they form a unique fingerprint.

  • Cite this

    Postema, M. C., van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Filho, G. B., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., ... Francks, C. (2019). Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature communications, 10(1), [4958]. https://doi.org/10.1038/s41467-019-13005-8