Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence

Norman Wolf, Philip Penn, William Pendergrass, Holly Van Remmen, Andrzej Bartke, Peter Rabinovitch, George M. Martin

Research output: Contribution to journalArticlepeer-review

58 Scopus citations


Five mouse models with known alterations of resistance to oxidative damage were compared by slit lamp examination for the presence and degree of advancement of age-related cataract in young adult and old animals along with wild type controls. A group of young and old normal C57BL/6Jax mice were examined first to constitute a standard, and they were found to exhibit age-related cataract development. Following this, four models on the C57BL/6 background with imposed genetic alterations affecting anti-oxidant enzyme presence or activity, and one outbred model in which a deletion blocked the growth hormone/IGF-1 axis, were similarly examined. There was no evidence of foetal or juvenile cataract development in any of these models, and an age-related severity for lens opacities was shown between young adult and old mice in all groups. Model 1, mice null for the anti-oxidant gene glutathione peroxidase-1 (GPX1) had significantly advanced cataracts in older mice vs. same age controls. In mouse model 2 hemizygous knockout of SOD2 (MnSOD) did not affect age-related cataract development. In model 3 combining the GPX1 and SOD2 deficiencies in the same animal did not advance cataract development beyond that of the GPX1 null alone. In model 4 the addition of anti-oxidant protection in the lens by transfection of human catalase targeted only to the mitochondria resulted in a significant delay in cataract development. The 5th model, growth hormone receptor knockout (GHR-/-) mice, also demonstrated a significant reduction in age-related cataract development, as well as dwarfism. These findings, in general, support the oxidative theory of age-related cataract development. The exception, the partial deletion of SOD2 in the hemizygous KO model, probably did not represent a sufficiently severe deprivation of anti-oxidant protection to produce pathologic changes in the lens.

Original languageEnglish (US)
Pages (from-to)276-285
Number of pages10
JournalExperimental Eye Research
Issue number3
StatePublished - Sep 2005
Externally publishedYes


  • Catarack
  • Hemizygous KO model
  • Hormonal
  • Lens
  • Mouse

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence'. Together they form a unique fingerprint.

Cite this