Adrenergic modulation of potassium metabolism during exercise in normal and diabetic humans

P. Castellino, D. C. Simonson, Ralph A Defronzo

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

The effect of acute and chronic β- and α-adrenergic blockade on potassium homeostasis during moderate intensity exercise (40% VO2(max)) was investigated in control and insulin-dependent diabetic subjects. In protocol I, subjects were studied during 1) exercise alone, 2) exercise plus intravenous propranolol, and 3) exercise plus intravenous phentolamine. In both the control and diabetic groups, exercise alone produced a modest increase in the plasma potassium concentration (0.31 ± 0.06 meq/l), while propranolol exacerbated this hyperkalemic response. In contrast, the increment in plasma potassium during phentolamine was similar to exercise alone in normals but was 26% (P < 0.05) lower in the diabetic group. In protocol II, the effect of chronic (5 days) β-adrenergic blockade on potassium homeostasis was examined. Subjects participated in three studies: 1) exercise alone, 2) exercise plus propranolol (β12-antagonist), and 3) exercise plus metoprolol (β1 antagonist). In the nondiabetic group, both propranolol and metoprolol were associated with a 40% greater increase in potassium compared with exercise alone. In the diabetic group, propranolol, but not metoprolol, was associated with a deterioration in potassium tolerance. In no study could the alterations in potassium homeostasis be explained by a change in urinary potassium excretion. In summary, 1) α-adrenergic blockade ameliorates exercise-induced hyperkalemia in diabetic but not in control subjects, 2) nonspecific β-adrenergic blockade causes a greater increment in potassium when compared with exercise alone, and 3) specific β1-adrenergic blockade exacerbates exercise-induced hyperkalemia in control, but not in diabetic subjects. These results indicate that both α- and β-adrenergic regulation of extrarenal potassium metabolism is altered in insulin-dependent diabetes mellitus.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume252
Issue number1
StatePublished - 1987
Externally publishedYes

Fingerprint

Metabolism
Adrenergic Agents
Potassium
Modulation
Propranolol
Metoprolol
Hyperkalemia
Homeostasis
Phentolamine
Insulin
Plasmas
Medical problems
Type 1 Diabetes Mellitus
Deterioration
Control Groups

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology
  • Physiology

Cite this

Adrenergic modulation of potassium metabolism during exercise in normal and diabetic humans. / Castellino, P.; Simonson, D. C.; Defronzo, Ralph A.

In: American Journal of Physiology - Endocrinology and Metabolism, Vol. 252, No. 1, 1987.

Research output: Contribution to journalArticle

@article{b77c55d3e62f4234928dc18663b823a4,
title = "Adrenergic modulation of potassium metabolism during exercise in normal and diabetic humans",
abstract = "The effect of acute and chronic β- and α-adrenergic blockade on potassium homeostasis during moderate intensity exercise (40{\%} VO2(max)) was investigated in control and insulin-dependent diabetic subjects. In protocol I, subjects were studied during 1) exercise alone, 2) exercise plus intravenous propranolol, and 3) exercise plus intravenous phentolamine. In both the control and diabetic groups, exercise alone produced a modest increase in the plasma potassium concentration (0.31 ± 0.06 meq/l), while propranolol exacerbated this hyperkalemic response. In contrast, the increment in plasma potassium during phentolamine was similar to exercise alone in normals but was 26{\%} (P < 0.05) lower in the diabetic group. In protocol II, the effect of chronic (5 days) β-adrenergic blockade on potassium homeostasis was examined. Subjects participated in three studies: 1) exercise alone, 2) exercise plus propranolol (β1/β2-antagonist), and 3) exercise plus metoprolol (β1 antagonist). In the nondiabetic group, both propranolol and metoprolol were associated with a 40{\%} greater increase in potassium compared with exercise alone. In the diabetic group, propranolol, but not metoprolol, was associated with a deterioration in potassium tolerance. In no study could the alterations in potassium homeostasis be explained by a change in urinary potassium excretion. In summary, 1) α-adrenergic blockade ameliorates exercise-induced hyperkalemia in diabetic but not in control subjects, 2) nonspecific β-adrenergic blockade causes a greater increment in potassium when compared with exercise alone, and 3) specific β1-adrenergic blockade exacerbates exercise-induced hyperkalemia in control, but not in diabetic subjects. These results indicate that both α- and β-adrenergic regulation of extrarenal potassium metabolism is altered in insulin-dependent diabetes mellitus.",
author = "P. Castellino and Simonson, {D. C.} and Defronzo, {Ralph A}",
year = "1987",
language = "English (US)",
volume = "252",
journal = "American Journal of Physiology - Renal Physiology",
issn = "0363-6127",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Adrenergic modulation of potassium metabolism during exercise in normal and diabetic humans

AU - Castellino, P.

AU - Simonson, D. C.

AU - Defronzo, Ralph A

PY - 1987

Y1 - 1987

N2 - The effect of acute and chronic β- and α-adrenergic blockade on potassium homeostasis during moderate intensity exercise (40% VO2(max)) was investigated in control and insulin-dependent diabetic subjects. In protocol I, subjects were studied during 1) exercise alone, 2) exercise plus intravenous propranolol, and 3) exercise plus intravenous phentolamine. In both the control and diabetic groups, exercise alone produced a modest increase in the plasma potassium concentration (0.31 ± 0.06 meq/l), while propranolol exacerbated this hyperkalemic response. In contrast, the increment in plasma potassium during phentolamine was similar to exercise alone in normals but was 26% (P < 0.05) lower in the diabetic group. In protocol II, the effect of chronic (5 days) β-adrenergic blockade on potassium homeostasis was examined. Subjects participated in three studies: 1) exercise alone, 2) exercise plus propranolol (β1/β2-antagonist), and 3) exercise plus metoprolol (β1 antagonist). In the nondiabetic group, both propranolol and metoprolol were associated with a 40% greater increase in potassium compared with exercise alone. In the diabetic group, propranolol, but not metoprolol, was associated with a deterioration in potassium tolerance. In no study could the alterations in potassium homeostasis be explained by a change in urinary potassium excretion. In summary, 1) α-adrenergic blockade ameliorates exercise-induced hyperkalemia in diabetic but not in control subjects, 2) nonspecific β-adrenergic blockade causes a greater increment in potassium when compared with exercise alone, and 3) specific β1-adrenergic blockade exacerbates exercise-induced hyperkalemia in control, but not in diabetic subjects. These results indicate that both α- and β-adrenergic regulation of extrarenal potassium metabolism is altered in insulin-dependent diabetes mellitus.

AB - The effect of acute and chronic β- and α-adrenergic blockade on potassium homeostasis during moderate intensity exercise (40% VO2(max)) was investigated in control and insulin-dependent diabetic subjects. In protocol I, subjects were studied during 1) exercise alone, 2) exercise plus intravenous propranolol, and 3) exercise plus intravenous phentolamine. In both the control and diabetic groups, exercise alone produced a modest increase in the plasma potassium concentration (0.31 ± 0.06 meq/l), while propranolol exacerbated this hyperkalemic response. In contrast, the increment in plasma potassium during phentolamine was similar to exercise alone in normals but was 26% (P < 0.05) lower in the diabetic group. In protocol II, the effect of chronic (5 days) β-adrenergic blockade on potassium homeostasis was examined. Subjects participated in three studies: 1) exercise alone, 2) exercise plus propranolol (β1/β2-antagonist), and 3) exercise plus metoprolol (β1 antagonist). In the nondiabetic group, both propranolol and metoprolol were associated with a 40% greater increase in potassium compared with exercise alone. In the diabetic group, propranolol, but not metoprolol, was associated with a deterioration in potassium tolerance. In no study could the alterations in potassium homeostasis be explained by a change in urinary potassium excretion. In summary, 1) α-adrenergic blockade ameliorates exercise-induced hyperkalemia in diabetic but not in control subjects, 2) nonspecific β-adrenergic blockade causes a greater increment in potassium when compared with exercise alone, and 3) specific β1-adrenergic blockade exacerbates exercise-induced hyperkalemia in control, but not in diabetic subjects. These results indicate that both α- and β-adrenergic regulation of extrarenal potassium metabolism is altered in insulin-dependent diabetes mellitus.

UR - http://www.scopus.com/inward/record.url?scp=0023276651&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023276651&partnerID=8YFLogxK

M3 - Article

C2 - 3544863

AN - SCOPUS:0023276651

VL - 252

JO - American Journal of Physiology - Renal Physiology

JF - American Journal of Physiology - Renal Physiology

SN - 0363-6127

IS - 1

ER -