Adenomatous polyposis coli interacts with flap endonuclease 1 to block its nuclear entry and function

Aruna S. Jaiswal, Melissa L. Armas, Tadahide Izumi, Phyllis R. Strauss, Satya Narayan

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In previous studies, we found that adenomatous polyposis coli (APC) blocks the base excision repair (BER) pathway by interacting with 5′-flap endonuclease 1 (Fen1). In this study, we identify the molecular features that contribute to the formation and/or stabilization of the APC/Fen1 complex that determines the extent of BER inhibition, and the subsequent accumulation of DNA damage creates mutagenic lesions leading to transformation susceptibility. We show here that APC binds to the nuclear localization sequence of Fen1 (Lys365Lys366Lys367), which prevents entry of Fen1 into the nucleus and participation in Pol-β-directed long-patch BER. We also show that levels of the APC/Fen1 complex are higher in breast tumors than in the surrounding normal tissues. These studies demonstrate a novel role for APC in the suppression of Fen1 activity in the BER pathway and a new biomarker profile to be explored to identify individuals who may be susceptible to the development of mammary and other tumors.

Original languageEnglish (US)
Pages (from-to)495-508
Number of pages14
JournalNeoplasia (United States)
Volume14
Issue number6
DOIs
StatePublished - Jun 2012

ASJC Scopus subject areas

  • Cancer Research

Fingerprint Dive into the research topics of 'Adenomatous polyposis coli interacts with flap endonuclease 1 to block its nuclear entry and function'. Together they form a unique fingerprint.

Cite this