Abstract
ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide-and chloride-sensitive22Na+ uptake and barium-sensitive, voltage-dependent86Rb+-influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1 mm ATP, and 50 mm KCl, the barium-sensitive86Rb+ influx increased from 361±138 to 528±120 pm/mg prot · 30 sec (P<0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 μg/ml) was also present in the vesicle solutions. The stimulation of86Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.
Original language | English (US) |
---|---|
Pages (from-to) | 65-72 |
Number of pages | 8 |
Journal | The Journal of Membrane Biology |
Volume | 109 |
Issue number | 1 |
DOIs | |
State | Published - Jul 1989 |
Externally published | Yes |
Keywords
- ADH
- cAMP-dependent protein kinase
- mTALH K channels
ASJC Scopus subject areas
- Biophysics
- Physiology
- Cell Biology