TY - JOUR
T1 - Activation of AMP-Activated Protein Kinase Prevents TGF-β1-Induced Epithelial-Mesenchymal Transition and Myofibroblast Activation
AU - Thakur, Sachin
AU - Viswanadhapalli, Suryavathi
AU - Kopp, Jeffrey B.
AU - Shi, Qian
AU - Barnes, Jeffrey L.
AU - Block, Karen
AU - Gorin, Yves
AU - Abboud, Hanna E.
N1 - Publisher Copyright:
© 2015 American Society for Investigative Pathology.
PY - 2015/8/1
Y1 - 2015/8/1
N2 - Transforming growth factor (TGF)-β contributes to tubulointerstitial fibrosis. We investigated the mechanism by which TGF-β exerts its profibrotic effects and specifically the role of AMP-activated protein kinase (AMPK) in kidney tubular epithelial cells and interstitial fibroblasts. In proximal tubular epithelial cells, TGF-β1 treatment causes a decrease in AMPK phosphorylation and activation together with increased fibronectin and α-smooth muscle actin expression and decreased in E-cadherin. TGF-β1 causes similar changes in interstitial fibroblasts. Activation of AMPK with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, metformin, or overexpression of constitutively active AMPK markedly attenuated TGF-β1 functions. Conversely, inhibition of AMPK with adenine 9-β-d-arabinofuranoside or siRNA-mediated knockdown of AMPK (official name PRKAA1) mimicked the effect of TGF-β1 and enhanced basal and TGF-β1-induced phenotypic changes. Importantly, we found that tuberin contributed to the protective effects of AMPK and that TGF-β1 promoted cell injury by blocking AMPK-mediated tuberin phosphorylation and activation. In the kidney cortex of TGF-β transgenic mice, the significant decrease in AMPK phosphorylation and tuberin phosphorylation on its AMPK-dependent activating site was associated with an increase in mesenchymal markers and a decrease in E-cadherin. Collectively, the data indicate that TGF-β exerts its profibrotic action in vitro and in vivo via inactivation of AMPK. AMPK and tuberin activation prevent tubulointerstitial injury induced by TGF-β. Activators of AMPK provide potential therapeutic strategy to prevent kidney fibrosis and progressive kidney disease.
AB - Transforming growth factor (TGF)-β contributes to tubulointerstitial fibrosis. We investigated the mechanism by which TGF-β exerts its profibrotic effects and specifically the role of AMP-activated protein kinase (AMPK) in kidney tubular epithelial cells and interstitial fibroblasts. In proximal tubular epithelial cells, TGF-β1 treatment causes a decrease in AMPK phosphorylation and activation together with increased fibronectin and α-smooth muscle actin expression and decreased in E-cadherin. TGF-β1 causes similar changes in interstitial fibroblasts. Activation of AMPK with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, metformin, or overexpression of constitutively active AMPK markedly attenuated TGF-β1 functions. Conversely, inhibition of AMPK with adenine 9-β-d-arabinofuranoside or siRNA-mediated knockdown of AMPK (official name PRKAA1) mimicked the effect of TGF-β1 and enhanced basal and TGF-β1-induced phenotypic changes. Importantly, we found that tuberin contributed to the protective effects of AMPK and that TGF-β1 promoted cell injury by blocking AMPK-mediated tuberin phosphorylation and activation. In the kidney cortex of TGF-β transgenic mice, the significant decrease in AMPK phosphorylation and tuberin phosphorylation on its AMPK-dependent activating site was associated with an increase in mesenchymal markers and a decrease in E-cadherin. Collectively, the data indicate that TGF-β exerts its profibrotic action in vitro and in vivo via inactivation of AMPK. AMPK and tuberin activation prevent tubulointerstitial injury induced by TGF-β. Activators of AMPK provide potential therapeutic strategy to prevent kidney fibrosis and progressive kidney disease.
UR - http://www.scopus.com/inward/record.url?scp=84937826398&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84937826398&partnerID=8YFLogxK
U2 - 10.1016/j.ajpath.2015.04.014
DO - 10.1016/j.ajpath.2015.04.014
M3 - Article
C2 - 26071397
AN - SCOPUS:84937826398
SN - 0002-9440
VL - 185
SP - 2168
EP - 2180
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 8
ER -