Activation of 5′-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells: Role of peroxynitrite

Ming Hui Zou, Xiu Yun Hou, Chao Mei Shi, Stacy Kirkpatick, Feng Liu, Mitchell H. Goldman, Richard A. Cohen

Research output: Contribution to journalArticle

152 Scopus citations

Abstract

AMP-activated kinase (AMPK) is a fuel-sensing enzyme present in most mammalian tissue. In response to a decrease in the energy state of a cell AMPK is phosphorylated and activated by still poorly characterized upstream events. Exposure of bovine aortic endothelial cells (BAEC) to chemically synthesized ONOO- acutely and significantly increased phosphorylation of c-Src, PDK1, AMPK, and its downstream target, acetyl-CoA carboxylase (ACC), without affecting cellular AMP. This novel pathway for AMPK activation was confirmed by the use of pharmacological inhibitors and dominant-negative mutants. Exposure of BAEC to hypoxia-reoxygenation (H/R) caused a biphasic increase in AMPK and ACC phosphorylation, which was prevented by adenoviral overexpression of superoxide dismutase (SOD) or inhibition of nitric-oxide synthase (NOS) implicating a role of ONOO- formed during H/R. Furthermore, dominant-negative mutants of c-Src or kinase-defective PDK1 also blocked H/R-induced AMPK activation indicating that, as with addition of exogenous ONOO-, both c-Src and PI 3-kinase are upstream of AMPK. Moreover, H/R, like ONOO-, significantly increased co-immunoprecipitation of AMPK with c-Src, suggesting that ONOO- favors physical association of AMPK with upstream kinases. Taken together, our results indicate a novel pathway by which H/R via ONOO- activates AMPK in a c-Src-mediated, PI 3-kinase-dependent manner, and suggest that ONOO--induced activation of AMPK might thereby regulate metabolic enzymes, such as ACC.

Original languageEnglish (US)
Pages (from-to)34003-34010
Number of pages8
JournalJournal of Biological Chemistry
Volume278
Issue number36
DOIs
Publication statusPublished - Sep 5 2003

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this