Abstract
Analyzing whole-genome bisulfite and related sequencing datasets is a time-intensive process due to the complexity and size of the input raw sequencing files and lengthy read alignment step requiring correction for conversion of all unmethylated Cs to Ts genome-wide. The objective of this study was to modify the read alignment algorithm associated with the whole-genome bisulfite sequencing methylation analysis pipeline (wg-blimp) to shorten the time required to complete this phase while retaining overall read alignment accuracy. Here, we report an update to the recently published pipeline wg-blimp achieved by replacing the use of the bwa-meth aligner with the faster gemBS aligner. This improvement to the wg-blimp pipeline has led to a more than ×7 acceleration in the processing speed of samples when scaled to larger publicly available FASTQ datasets containing 80-160 million reads while maintaining nearly identical accuracy of properly mapped reads when compared with data from the previous pipeline. The modifications to the wg-blimp pipeline reported here merge the speed and accuracy of the gemBS aligner with the comprehensive analysis and data visualization assets of the wg-blimp pipeline to provide a significantly accelerated workflow that can produce high-quality data much more rapidly without compromising read accuracy at the expense of increasing RAM requirements up to 48 GB.
Original language | English (US) |
---|---|
Article number | bpad012 |
Journal | Biology Methods and Protocols |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - 2023 |
Externally published | Yes |
Keywords
- DNA methylation
- analysis pipeline
- epigenetics
- whole-genome bisulfite sequencing
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Agricultural and Biological Sciences