Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice

Sathyaseelan S. Deepa, Holly Van Remmen, Susan V. Brooks, John A. Faulkner, Lisa Larkin, Anne McArdle, Malcolm J. Jackson, Aphrodite Vasilaki, Arlan Richardson

Research output: Contribution to journalReview articlepeer-review

14 Scopus citations

Abstract

Mice lacking Cu/Zn-superoxide dismutase (Sod1-/- or Sod1KO mice) show high levels of oxidative stress/damage and a 30% decrease in lifespan. The Sod1KO mice also show many phenotypes of accelerated aging with the loss of muscle mass and function being one of the most prominent aging phenotypes. Using various genetic models targeting the expression of Cu/Zn-superoxide dismutase to specific tissues, we evaluated the role of motor neurons and skeletal muscle in the accelerated loss of muscle mass and function in Sod1KO mice. Our data are consistent with the sarcopenia in Sod1KO mice arising through a two-hit mechanism involving both motor neurons and skeletal muscle. Sarcopenia is initiated in motor neurons leading to a disruption of neuromuscular junctions that results in mitochondrial dysfunction and increased generation of reactive oxygen species (ROS) in skeletal muscle. The mitochondrial ROS generated in muscle feedback on the neuromuscular junctions propagating more disruption of neuromuscular junctions and more ROS production by muscle resulting in a vicious cycle that eventually leads to disaggregation of neuromuscular junctions, denervation, and loss of muscle fibers.

Original languageEnglish (US)
Pages (from-to)19-23
Number of pages5
JournalFree Radical Biology and Medicine
Volume132
DOIs
StatePublished - Feb 20 2019

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice'. Together they form a unique fingerprint.

Cite this