TY - JOUR
T1 - A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
AU - the Kidney Precision Medicine Project
AU - Lutnick, Brendon
AU - Manthey, David
AU - Becker, Jan U.
AU - Ginley, Brandon
AU - Moos, Katharina
AU - Zuckerman, Jonathan E.
AU - Rodrigues, Luis
AU - Gallan, Alexander J.
AU - Barisoni, Laura
AU - Alpers, Charles E.
AU - Wang, Xiaoxin X.
AU - Myakala, Komuraiah
AU - Jones, Bryce A.
AU - Levi, Moshe
AU - Kopp, Jeffrey B.
AU - Yoshida, Teruhiko
AU - Zee, Jarcy
AU - Han, Seung Seok
AU - Jain, Sanjay
AU - Rosenberg, Avi Z.
AU - Jen, Kuang Yu
AU - Sarder, Pinaki
AU - Lutnick, Brendon
AU - Ginley, Brandon
AU - Knight, Richard
AU - Lecker, Stewart H.
AU - Stillman, Isaac
AU - Bogen, Steve
AU - Amodu, Afolarin A.
AU - Ilori, Titlayo
AU - Schmidt, Insa
AU - Maikhor, Shana
AU - Beck, Laurence H.
AU - Verma, Ashish
AU - Henderson, Joel M.
AU - Onul, Ingrid
AU - Waikar, Sushrut
AU - McMahon, Gearoid M.
AU - Weins, Astrid
AU - Colona, Mia R.
AU - Valerius, M. Todd
AU - Hacohen, Nir
AU - Hoover, Paul J.
AU - Greka, Anna
AU - Marshall, Jamie L.
AU - Aulisio, Mark
AU - Bansal, Shweta
AU - Sharma, Kumar
AU - Venkatachalam, Manjeri
AU - Zhang, Guanshi
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. Methods: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. Results: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. Conclusions: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain.
AB - Background: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. Methods: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. Results: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. Conclusions: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain.
UR - http://www.scopus.com/inward/record.url?scp=85148639650&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148639650&partnerID=8YFLogxK
U2 - 10.1038/s43856-022-00138-z
DO - 10.1038/s43856-022-00138-z
M3 - Article
AN - SCOPUS:85148639650
SN - 2730-664X
VL - 2
JO - Communications Medicine
JF - Communications Medicine
IS - 1
M1 - 105
ER -