A Scaled Proteomic Discovery Study for Prostate Cancer Diagnostic Markers Using ProteographTM and Trapped Ion Mobility Mass Spectrometry

Matthew E.K. Chang, Jane Lange, Jessie May Cartier, Travis W. Moore, Sophia M. Soriano, Brenna Albracht, Michael Krawitzky, Harendra Guturu, Amir Alavi, Alexey Stukalov, Xiaoyuan Zhou, Eltaher M. Elgierari, Jessica Chu, Ryan Benz, Juan C. Cuevas, Shadi Ferdosi, Daniel Hornburg, Omid Farokhzad, Asim Siddiqui, Serafim BatzoglouRobin J. Leach, Michael A. Liss, Ryan P. Kopp, Mark R. Flory

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

There is a significant unmet need for clinical reflex tests that increase the specificity of prostate-specific antigen blood testing, the longstanding but imperfect tool for prostate cancer diagnosis. Towards this endpoint, we present the results from a discovery study that identifies new prostate-specific antigen reflex markers in a large-scale patient serum cohort using differentiating technologies for deep proteomic interrogation. We detect known prostate cancer blood markers as well as novel candidates. Through bioinformatic pathway enrichment and network analysis, we reveal associations of differentially abundant proteins with cytoskeletal, metabolic, and ribosomal activities, all of which have been previously associated with prostate cancer progression. Additionally, optimized machine learning classifier analysis reveals proteomic signatures capable of detecting the disease prior to biopsy, performing on par with an accepted clinical risk calculator benchmark.

Original languageEnglish (US)
Article number8010
JournalInternational journal of molecular sciences
Volume25
Issue number15
DOIs
StatePublished - Aug 2024

Keywords

  • biomarker
  • diagnosis
  • mass spectrometry
  • prostate cancer
  • proteomics
  • serum

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'A Scaled Proteomic Discovery Study for Prostate Cancer Diagnostic Markers Using ProteographTM and Trapped Ion Mobility Mass Spectrometry'. Together they form a unique fingerprint.

Cite this