A robust unified approach to analyzing methylation and gene expression data

Abbas Khalili, Tim Huang, Shili Lin

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Microarray technology has made it possible to investigate expression levels, and more recently methylation signatures, of thousands of genes simultaneously, in a biological sample. Since more and more data from different biological systems or technological platforms are being generated at an incredible rate, there is an increasing need to develop statistical methods that are applicable to multiple data types and platforms. Motivated by such a need, a flexible finite mixture model that is applicable to methylation, gene expression, and potentially data from other biological systems, is proposed. Two major thrusts of this approach are to allow for a variable number of components in the mixture to capture non-biological variation and small biases, and to use a robust procedure for parameter estimation and probe classification. The method was applied to the analysis of methylation signatures of three breast cancer cell lines. It was also tested on three sets of expression microarray data to study its power and type I error rates. Comparison with a number of existing methods in the literature yielded very encouraging results; lower type I error rates and comparable/better power were achieved based on the limited study. Furthermore, the method also leads to more biologically interpretable results for the three breast cancer cell lines.

Original languageEnglish (US)
Pages (from-to)1701-1710
Number of pages10
JournalComputational Statistics and Data Analysis
Volume53
Issue number5
DOIs
StatePublished - Mar 15 2009
Externally publishedYes

ASJC Scopus subject areas

  • Statistics and Probability
  • Computational Mathematics
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A robust unified approach to analyzing methylation and gene expression data'. Together they form a unique fingerprint.

Cite this