TY - JOUR
T1 - A mutually induced conformational fit underlies Ca2-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K channels
AU - Archer, Crystal R.
AU - Enslow, Benjamin T.
AU - Taylor, Alexander B.
AU - De la Rosa, Victor
AU - Bhattacharya, Akash
AU - Shapiro, Mark S.
N1 - Publisher Copyright:
© 2019 Archer et al.
PY - 2019/4/12
Y1 - 2019/4/12
N2 - Calmodulin (CaM) conveys intracellular Ca2 signals to KCNQ (Kv7, “M-type”) K channels and many other ion channels. Whether this “calmodulation” involves a dramatic structural rearrangement or only slight perturbations of the CaM/ KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low nanomolar and physiologically high intracellular [Ca2] is still under debate. Here, we used various techniques of biophysical chemical analyses to investigate the interactions between CaM and synthetic peptides corresponding to the A and B domains of the KCNQ4 subtype. We found that in the absence of CaM, the peptides are disordered, whereas Ca2/CaM imposed helical structure on both KCNQ A and B domains. Isothermal titration calorimetry revealed that Ca2/CaM has higher affinity for the B domain than for the A domain of KCNQ2– 4 and much higher affinity for the B domain when prebound with the A domain. X-ray crystallography confirmed that these discrete peptides spontaneously form a complex with Ca2/CaM, similar to previous reports of CaM binding KCNQ-AB domains that are linked together. Microscale thermophoresis and heteronuclear single-quantum coherence NMR spectroscopy indicated the C-lobe of Ca2-free CaM to interact with the KCNQ4 B domain (Kd 10 –20 M), with increasing Ca2 molar ratios shifting the CaM-B domain interactions via only the CaM C-lobe to also include the N-lobe. Our findings suggest that in response to increased Ca2, CaM undergoes lobe switching that imposes a dramatic mutually induced conformational fit to both the proximal C terminus of KCNQ4 channels and CaM, likely underlying Ca2-dependent regulation of KCNQ gating.
AB - Calmodulin (CaM) conveys intracellular Ca2 signals to KCNQ (Kv7, “M-type”) K channels and many other ion channels. Whether this “calmodulation” involves a dramatic structural rearrangement or only slight perturbations of the CaM/ KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low nanomolar and physiologically high intracellular [Ca2] is still under debate. Here, we used various techniques of biophysical chemical analyses to investigate the interactions between CaM and synthetic peptides corresponding to the A and B domains of the KCNQ4 subtype. We found that in the absence of CaM, the peptides are disordered, whereas Ca2/CaM imposed helical structure on both KCNQ A and B domains. Isothermal titration calorimetry revealed that Ca2/CaM has higher affinity for the B domain than for the A domain of KCNQ2– 4 and much higher affinity for the B domain when prebound with the A domain. X-ray crystallography confirmed that these discrete peptides spontaneously form a complex with Ca2/CaM, similar to previous reports of CaM binding KCNQ-AB domains that are linked together. Microscale thermophoresis and heteronuclear single-quantum coherence NMR spectroscopy indicated the C-lobe of Ca2-free CaM to interact with the KCNQ4 B domain (Kd 10 –20 M), with increasing Ca2 molar ratios shifting the CaM-B domain interactions via only the CaM C-lobe to also include the N-lobe. Our findings suggest that in response to increased Ca2, CaM undergoes lobe switching that imposes a dramatic mutually induced conformational fit to both the proximal C terminus of KCNQ4 channels and CaM, likely underlying Ca2-dependent regulation of KCNQ gating.
UR - http://www.scopus.com/inward/record.url?scp=85064336838&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064336838&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA118.006857
DO - 10.1074/jbc.RA118.006857
M3 - Article
C2 - 30808708
AN - SCOPUS:85064336838
SN - 0021-9258
VL - 294
SP - 6094
EP - 6112
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 15
ER -