A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines

Patrick J. Hillas, Paul F. Fitzpatrick

Research output: Contribution to journalArticle

65 Scopus citations

Abstract

The iron-containing enzyme tyrosine hydroxylase catalyzes the hydroxylation of tyrosine to dihydroxyphenylalanine. A series of 4-X-substituted (X = H, F, Br, Cl, CH3, or CH3O) phenylalanines have been characterized as substrates to gain insight into the mechanism of hydroxylation. Multiple hydroxylated products were formed in most cases. As the size of the substituent at the 4-position increased, the site of hydroxylation switched from the 4- to the 3-position of the aromatic ring. The total amount of product formed with each amino acid showed a very good correlation with the a parameter of the substituent, with p values of -4.3 ± 0.7 or -5.6 ± 0.8 when tetrahydrobiopterin or 6-methyltetrahydropterin, respectively, was used as cosubstrate. These values are consistent with a highly electron deficient transition state for hydroxylation. Oxygen addition at the 4-position resulted in either elimination of the substituent to form tyrosine or an NIH shift to form the respective 3-X-tyrosine. The relative amount of the product due to an NIH shift decreased in the order Br > CH3 > Cl ≫ F ∼ CH3O ∼ 0. A chemical mechanism for hydroxylation by tyrosine hydroxylase is presented to account for product formation from the various 4-substituted phenylalanines.

Original languageEnglish (US)
Pages (from-to)X-6975
JournalBiochemistry
Volume35
Issue number22
DOIs
StatePublished - Jun 4 1996

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines'. Together they form a unique fingerprint.

  • Cite this