TY - JOUR
T1 - A cyclin D1 intrinsically disordered domain accesses modified histone motifs to govern gene transcription
AU - Jiao, Xuanmao
AU - Di Sante, Gabriele
AU - Casimiro, Mathew C.
AU - Tantos, Agnes
AU - Ashton, Anthony W.
AU - Li, Zhiping
AU - Quach, Yen
AU - Bhargava, Dharmendra
AU - Di Rocco, Agnese
AU - Pupo, Claudia
AU - Crosariol, Marco
AU - Lazar, Tamas
AU - Tompa, Peter
AU - Wang, Chenguang
AU - Yu, Zuoren
AU - Zhang, Zhao
AU - Aldaaysi, Kawthar
AU - Vadlamudi, Ratna
AU - Mann, Monica
AU - Skordalakes, Emmanuel
AU - Kossenkov, Andrew
AU - Du, Yanming
AU - Pestell, Richard G.
N1 - Publisher Copyright:
© 2024, The Author(s).
PY - 2024/12
Y1 - 2024/12
N2 - The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.
AB - The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.
UR - http://www.scopus.com/inward/record.url?scp=85181691928&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181691928&partnerID=8YFLogxK
U2 - 10.1038/s41389-023-00502-1
DO - 10.1038/s41389-023-00502-1
M3 - Article
C2 - 38191593
AN - SCOPUS:85181691928
SN - 2157-9024
VL - 13
JO - Oncogenesis
JF - Oncogenesis
IS - 1
M1 - 4
ER -