A bi-dimensional regression tree approach to the modeling of gene expression regulation

Jianhua Ruan, Weixiong Zhang

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Motivation: The transcriptional regulation of a gene depends on the binding of cis-regulatory elements on its promoter to some transcription factors and the expression levels of the transcription factors. Most existing approaches to studying transcriptional regulation model these dependencies separately, i.e. either from promoters to gene expression or from the expression levels of transcription factors to the expression levels of genes. Little effort has been devoted to a single model for integrating both dependencies. Results: We propose a novel method to mo del gene expression using both promoter sequences and the expression levels of putative regulators. The proposed method, called bi-dimensional regression tree (BDTree), extends a multivariate regression tree approach by applying it simultaneously to both genes and conditions of an expression matrix. The method produces hypotheses about the condition-specific binding motifs and regulators for each gene. As a side-product, the method also partitions the expression matrix into small submatrices in a way similar to bi-clustering. We propose and compare several splitting functions for building the tree. When applied to two microarray datasets of the yeast Saccharomyces cerevisiae, BDTree successfully identifies most motifs and regulators that are known to regulate the biological processes underlying the datasets. Comparing with an existing algorithm, BDTree provides a higher prediction accuracy in cross-validations.

Original languageEnglish (US)
Pages (from-to)332-340
Number of pages9
Issue number3
StatePublished - Feb 1 2006
Externally publishedYes

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics


Dive into the research topics of 'A bi-dimensional regression tree approach to the modeling of gene expression regulation'. Together they form a unique fingerprint.

Cite this