3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method

F. S. Salinas, J. L. Lancaster, P. T. Fox

Research output: Contribution to journalArticle

73 Scopus citations

Abstract

Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.

Original languageEnglish (US)
Pages (from-to)3631-3647
Number of pages17
JournalPhysics in Medicine and Biology
Volume54
Issue number12
DOIs
StatePublished - 2009

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of '3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method'. Together they form a unique fingerprint.

Cite this