Identification of Novel Plant-derived Antimalarial Compounds

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): Malaria is a major public health problem in tropical regions worldwide. It is estimated that 500 million people are infected with malarial parasites annually and the problem has been exacerbated in the past 20 years by the emergence of drug resistant parasites. There is an urgent need for novel classes of antimalarial drugs. To date no malaria vaccine has been developed and parasites resistant to all classes of antimalarials exist in many areas of the world. Rational treatment policies that combine multiple classes of antimalarial drugs are being used to limit the origin and spread of drug resistance, but unfortunately there are insufficient drug classes available to ensure the long term success of this approach. The goal of this project is to isolate new chemical compounds with potent activity against drug sensitive and drug resistant malarial parasites. Compounds isolated from plants have proven to be the mainstay in antimalarial therapy for centuries. Three major drug classes in use against malaria are based on plant-derived structures. Quinine was originally isolated from Cinchona spp. and provided the chemical template for chloroquine and newer derivatives. Artemisinin was originally isolated from Artemisia annua and the newest class of compounds represented by atovaquone is structurally derived from lapachol, isolated from Tabebuia sp. There remains a good expectation that new antimalarial compounds can be identified from plants. In preliminary studies we screened a unique extract library derived from plants that thrive in the harsh environment of South Texas. Four crude extracts showed potent activity against the malaria parasite P. falciparum with an IC50 range of 1.8 - 12.2
StatusFinished
Effective start/end date7/15/116/30/14

Funding

  • National Institutes of Health: $205,271.00
  • National Institutes of Health: $257,825.00

ASJC

  • Medicine(all)
  • Immunology and Microbiology(all)

Fingerprint Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.